If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=49/16
We move all terms to the left:
a^2-(49/16)=0
We add all the numbers together, and all the variables
a^2-(+49/16)=0
We get rid of parentheses
a^2-49/16=0
We multiply all the terms by the denominator
a^2*16-49=0
Wy multiply elements
16a^2-49=0
a = 16; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·16·(-49)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*16}=\frac{-56}{32} =-1+3/4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*16}=\frac{56}{32} =1+3/4 $
| 4.5x+40=112 | | 7y-3y=3y+49 | | 4.1=8.9-0.6x | | r4=16 | | 4-(2z-8)/3=1/2(2z+5) | | -5x+16=-2(x-5) | | 36-3m=-2(m-8)-5m | | 9y+15=4y-65 | | 5n-32=-5n-4(5n-7) | | 2(3g-4)=(8g+3) | | 6x^2-18x-9=0 | | -(5v+3)(v-5)=0 | | 3(2x)+10(2)-20=5 | | 7y-13=29 | | x-1/5=x+2/4 | | 4x–9=6x–13 | | 3(2)y+10(2)-20=5 | | 3x-35=2x-21 | | −2(b−2)=2−7b | | -3x*(5+(-3/x))=51 | | -(x-4)=-x-4 | | 7x16=6x+6 | | 2(b+5)-(9+b)=-4 | | -5x-3=-3-5x | | 12a+15+20=2400 | | c=5c+21 | | 7x=16=2 | | 10(x)=6x+2 | | 25(-1)y-5(-1)+8=38 | | -(v+3)(5v-5)=0 | | -3x*(5+-3/x)=51 | | x+32+x+54=180 |